Ce blog rassemble des informations et des réflexions sur l'avenir qui nous attend.

This blog presents informations and views about the future.

Affichage des articles dont le libellé est stockage d'énergie. Afficher tous les articles
Affichage des articles dont le libellé est stockage d'énergie. Afficher tous les articles

vendredi 21 décembre 2018

Le stockage d'énergie, technologie clef de la transition énergétique/ Energy storage, a key technology for ensuring the energy transition


Energy storage is a key technology in the energy transition. Since wind and solar energy are intermittent, it is necessary either to associate with them an easily adaptable fossil energy, or an energy storage system. For the time being the share of these energies is small and it is therefore relatively easy to cover the intermittency by a modulation of the other sources of energy. It should be noted, however, that this leads to poorer economic use of other types of plants. From the moment when the share of renewable energies reaches a significant level, energy storage is required. However, there are no easily applicable solutions in this area. The most common solution for achieving significant storage capacity, which currently provides 99% of stationary storage needs, is to pump water at high altitude (storage phase) and then to recover power when needed, by sending the water back through a turbine. It is a well proven solution that leads to good overall yields (of the order of 80%) and which allows a very long life of the facilities. However, it is necessary to have adapted sites. In France, these sites are, for the most part already exploited. In addition, they are frequently far from the production sites, for example offshore wind turbines. Much progress has been made in the field of batteries, but they are not suited to large capacities or long storage times. For example, in the case of a wind turbine, storing the equivalent of the average production for 8 hours leads to an investment in batteries equivalent to the investment required for a wind turbine (Li-ion battery, with a 700 € / kWh of investment for the battery ). However, we can observe a lack of wind for several days. In addition, there is a lack of perspective regarding the life of batteries in such conditions. It is also envisaged to store electricity by producing hydrogen by electrolysis and then generating electricity in a fuel cell. However, the overall yield remains low (between 35 and 45%) and the storage of hydrogen in large quantities is not easy to ensure. Underground storage is possible, but it is imperative to guard against any risk of leakage, which leads to a problem of acceptability. Finally, the costs are high and all the more difficult to make profitable that the operation is intermittent. It is therefore imperative to study and develop innovative solutions in this field: mini hydraulic storage, seawater pumping, new batteries (such as Redox-flow batteries), other physicochemical systems? Many tracks can be envisaged, but none of them has yet been imposed on a large scale. It is therefore essential to identify new storage routes and to test them up to an industrial stage, in particular to have information concerning transient operation.

Le stockage d'énergie est une technologie clef de la transition énergétique. Comme les énergies éoliennes et solaires sont intermittentes, il faut soit leur associer une énergie fossile facilement modulable, soit un système de stockage d’énergie. Pour le moment la part de ces énergies est faible et il est donc relativement facile de couvrir l'intermittence par une modulation des autres sources d'énergie. Il faut noter toutefois que cela conduit à une moins bonne utilisation économique des autres types de centrales. 
   A partir du moment où la part des énergies renouvelables va atteindre un niveau significatif, le stockage d'énergie devient indispensable. Or, on ne dispose pas de solutions vraiment satisfaisantes dans ce domaine. La solution la plus répandue pour réaliser des capacités de stockage importantes, qui assure actuellement 99% des besoins de stockage stationnaire,  consiste à pomper de l'eau en altitude (phase de stockage) puis à la turbiner (déstockage).  C'est une solution éprouvée qui conduit à de bons rendements globaux (de l'ordre de 80%) et qui permet une très longue durée de vie des installations. Toutefois, il faut disposer de sites adaptés. En France, ces sites sont, pour la plupart déjà exploités. En outre, ils sont fréquemment éloignés des sites de production, s'il s'agit par exemple d'éoliennes en mer. 
    De grands progrès ont été accomplis dans le domaine des batteries, mais celles-ci ne sont pas adaptées aux grandes capacités ni à des temps longs de stockage. Ainsi par exemple dans le cas d'une éolienne, stocker l'équivalent de la production moyenne pendant 8 h entraîne un investissement en batteries équivalent à l'investissement nécessaire pour une l'éolienne (batterie Li-ion, avec l'hypothèse 700 d'investissement batterie  /kWh). Or, on peut observer une absence de vent pendant plusieurs jours. En outre, on manque de recul concernant la durée de vie des batteries dans de telles conditions.
   Il est également envisagé de stocker l'électricité en produisant de l'hydrogène par électrolyse, puis en générant de l'électricité dans une pile à combustible. Toutefois, le rendement global reste faible (entre 35 et 45%) et le stockage de l'hydrogène en grandes quantités n'est pas facile à assurer. Le stockage souterrain est possible, mais il faut impérativement se prémunir de tout risque de fuite, ce qui entraîne un problème d'acceptabilité.  Enfin les coûts sont élevés et d'autant plus difficiles à rentabiliser que le fonctionnement  est intermittent.
  Il est donc impératif d'étudier et développer des solutions innovantes dans ce domaine: mini stockages hydrauliques, pompage/turbinage d'eau de mer, nouvelles batteries (telles que les batteries Redox-flow), autres systèmes physico-chimiques? De nombreuses pistes peuvent être envisagées, mais aucune d'entre elles ne s'est encore imposée à grande échelle. Il est donc essentiel d'identifier des voies nouvelles de stockage et de les tester jusqu'à un stade industriel, notamment pour disposer d'informations concernant un fonctionnement en régime transitoire.

lundi 17 septembre 2018

Complémentarité des sources d'énergie / Complementarity of energy sources

Are the energy sources complementary? This could be considered to be the case in that a diversified energy mix is ​​a guarantee of resilience and a security against the particular risks of each energy source. However, for complementarity to play out, energy sources must be flexible. This is the case for fossil fuels, hydroelectricity and ex-biomass energy. This is not the case for solar energy and wind energy that are produced according to the weather conditions. Nuclear power, for its part, can be qualified as semi-modular, because on the one hand the operating flexibility of nuclear power plants is limited, but on the other hand and especially the variable cost of production is low (not exceeding 10% the cost per kWh produced) a temporary reduction in consumption leads to very little reduction in consumption costs. Thus, when solar or wind-generated kWh are substituted for nuclear generation, the cost of renewable energy power generation is added without significant savings on the production of electricity from nuclear sources. In contrast to fossil fuels, wind and solar power cannot be allocated to variable consumption and necessarily also concern baseload consumption. In addition, as the share of nuclear power increases, the share of demand remaining to be filled becomes variable. Thus, in France, the power demand in 2015 varied between 29 and 91 GW. In this case, if the share of wind and solar energy increases significantly, there will be only two solutions. The first is to provide fossil fuel back-up by using natural gas in preference, given the limited availability of hydraulics and biomass, but necessarily increasing CO2 emissions. The second is to massively increase energy storage capacity. This storage should be able to accommodate very variable durations ranging from a few hours to a few months. As gravity storage capacity in France remains limited, it remains the option of hydrogen storage, but it has many disadvantages (overall low efficiency of the order of 35%, high fixed costs especially if the durations of use remain limited, storage enclosure issues). However in the French context with a significant share of nuclear energy (77% in 2015), such a development of the storage is essential so that the investments in wind and solar are not engaged in pure loss.

Les sources d'énergie sont-elles complémentaires? On pourrait considérer que c'est le cas dans la mesure où un mix énergétique diversifié est un gage de résilience et une sécurité vis-à-vis des risques particuliers que comporte chaque source d'énergie. Toutefois, pour que la complémentarité puisse jouer, il faut que les sources d'énergie soient modulables. C'est le cas des énergies fossiles, de l'hydroélectricité et de l'énergie ex-biomasse. Ce n'est pas le cas de l'énergie solaire et de l'énergie éolienne qui sont produites en fonction des conditions météorologiques. Le nucléaire pour sa part peut-être qualifié de semi-modulable, car d'une part la souplesse de fonctionnement des centrales nucléaires est limitée, mais d'autre part et surtout le coût variable de la production étant faible (ne dépassant pas 10% du coût du kWh produit) une réduction temporaire de consommation n'entraîne que très peu de réduction sur les coûts de consommation. Ainsi lorsque des kWh d'origine solaire ou éolienne viennent se substituer à une production nucléaire, le coût lié aux renouvelables vient s'ajouter sans économie appréciable sur la production d'électricité d'origine nucléaire. Contrairement à ce qui se passe avec les énergies fossiles, l'électricité d'origine éolienne et solaire ne peut pas en effet être affectée à la consommation variable et concerne nécessairement également la consommation de base. En outre, plus la part de nucléaire augmente, plus la part de la demande restant à combler devint variable. Ainsi, en France, la puissance appelée en 2015 a varié entre 29 et 91 GW. Dans ce cas, si la part d'énergie éolienne et d'énergie solaire augmentent sensiblement, il n'y aura que deux solutions. La première est d'assurer un back-up par de l'énergie fossile, en utilisant de préférance du gaz naturel, étant donné les disponibilités limitées en hydraulique et en biomasse mais en augmentant nécessairement dans ce cas les émissions de CO2. La deuxième est d'augmenter massivement les capacités de stockage d'énergie. Ce stockage devrait pouvoir accommoder des durées très variables allant de quelques heures à quelques mois. Les capacités de stockage gravitaire en France restant limitées, il reste l'option du stockage d'hydrogène, mais celui-ci présente de nombreux inconvénients (faible rendement global de l'ordre de 35%, coûts fixes élevés surtout si les durées d'utilisation restent limitées, problèmes de l'enceinte de stockage). Toutefois dans le contexte français avec une part du nucléaire importante (de 77% en 2015), un tel développement du stockage est indispensable pour que les investissements en matière d'éolien et de solaire ne soient pas engagés en pure perte.

dimanche 13 novembre 2011

Le stockage d'énergie, condition de déploiement des énergies renouvelables / Energy storage as a prerequisite for renewable energy sources deployment

An extensive use of renewable energy sources requires finding an appropriate solution for energy storage. Renewable energy sources, such as wind and solar, are intermittent, and therefore some kind of back-up is needed for meeting the demand.  It can be provided by a gas-fired combibed cycle power-plant, but for increasing the penetration of renewable energy sources, while reducing the use of fossil fuels, some kind of energy storage system is needed. Large capacity storage is provided by pumped hydro-storage systems, but they are limited by the number of appropriate natural sites and the large size of the installations. In such a case, the storage location is generally located far from the production site. Therefore, large electricity transport costs are involved, together with resulting energy losses.  Such systems are clearly not appropriate for short duration intermittencies.  Other storage systems , such as batteries or flywheels,  are then required. Energy storage is quite costly. As practised now, it can represent 50 to 150 €/ MWh. These figures do not include the cost of electricity transportation. It is therefore a priority to develop new more cost-efficient energy storage systems. It is especially important to develop systems which could be cost-effective while being displayed near the production site. Liquid phase chemical systems, compressed air storage systems are potential candidates, but no option can  be considered as wholly satisfactory and energy storage remains until now the main hurdle to overcome for developing renewable energy sources.  

Un recours très étendu aux énergies renouvelables implique de résoudre un problème particulièrement critique qui est celui du stockage d'énergie. En effet les énergies renouvelables, éolien et solaire sont intermittentes. Le vent peut s’arrêter et souffle à des vitesses très variables. Le rayonnement reçu du soleil est aussi très variable et s'annule la nuit. L’intermittence des systèmes de production d’électricité utilisant une énergie renouvelable (solaire, éolien), peut être compensée en modulant la puissance d’une centrale thermique opérant en back-up (telle qu’une centrale au gaz à cycle combiné). Pour augmenter le niveau de pénétration des énergies renouvelables, il faudra dans l’avenir recourir à des systèmes de stockage d’énergie de grande capacité